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Least-squares inversion tends to be sensitive to small changes in the assumptions; in the 
statistical lexicon, it is not “robust.” Least-squares solutions of noisy, ill-conditioned systems 
often exhibit unphysical, high-frequency oscillations which have to be damped or smoothed in 
some fashion. The iteratively reweighted least squares (IRLS) algorithm provides a means of 
computing approximate I, solutions (1 < p). We will show that IRLS can be combined with 
the preconditioned conjugate gradient algorithm in order to solve large, sparse, rectangular 
systems of linear, algebraic equations very efficiently. Further, for pz 1, the resulting 
algorithm is extremely stable; it seems to give reasonably smooth solutions without minute 
adjustment of the parameters and does not become unstable if an overly optimistic error 
estimate is used. It also has the ability to reject, or at least significantly diminish, the influence 
of outliers in the data and does not require the use of damping. Ln addition, we will show how 
to efficiently include diagonal weighting of the observations and parameters in order to incor- 
porate a priori information into the inversion. This combined inversion algorithm has wide 
applicability in “real-world” inverse theory, parameter estimation, filtering. etc., where data 
are noisy and not uniformly reliable. Numerical examples of the I, inversion of noisy seismic 
travel time data will be shown. ‘c’ 19% Academic Press, Inc. 

INTRODUCTION 

The potential advantages of computing I, solutions to real-world inverse 
problems have long been recognized. Eisenhart [l] describes the work of the 
protean scholar Roger Joseph Boscovich, S.J., who in the 1750s used a smallest 
absolute value criterion to reconcile geodetic measurements for the determination of 
the figure of the earth. Boscovich developed a simple geometrical method for com- 
puting the best 1, line through any number of points. Gauss was aware of this work 
and in his Theori~ Motus [Z] describes an elegant algebraic method for computing 
the I, solution to an overdetermined system of linear, algebraic equations. Gauss’ 
method is based upon the fact that the I, solution exactly satisfies a square sub- 
system whose size equals the number of columns in the original matrix (assuming 
full column rank). If one computes all of the solutions to these subsystems, it suf- 
fices to see which has the smallest I, residual. That the 1, solution actually satisfies 
one of these subsystems exactly is, according to Gauss, easily shown; for a proof of 
this adumbration of the fundamental theorem of linear programming see [3]. 

314 
0021-9991!88 $3.0 
Copyright $0 1988 by Academic Press, Inc. 
AU n@,tj of reproducfmn m any km,, reserved. 



FAST 1, INVERSION 315 

Claerbout and Muir [4] give numerous examples of the advantages of (1 inver- 
sion vis-&-vis the more familiar I, (least-squares) inversion. For the most part, these 
advantages are based upon the fact that I2 solutions tend to overstate the influence 
of outliers in the data. For highly ill-conditioned problems, as we shall see, even 
small amounts of Gaussian noise can seriously degrade the quality of least-squares 
soiutions. The disadvantage of I, optimization is that, except for p = 2, the problem 
is nonlinear. Until the mid 1970s most algorithms used for i, inversion were based 
upon relatively slow linear programming extensions of Gauss’ method (e.g., [5] ). 
An iterative approach to I, inversion, 1 < p, which is based upon solving a sequence 
of weighted least-squares problems, is called TRLS (for iteratively reweighted least 
squares). IRLS is usually attributed to Beaton and Tukey [6] although 
Schlossmacher [24] had previously published the I, version. Byrd and Pyne [7] 
give numerous references to the use of IRLS and provide convergence results. The 
IRLS algorithm has recently been successfully applied to the computation of digitat 
lilters by Yarlagadda et al. [S], to ID acoustic inversion by Gersztenkorn cl ai. 
[9]> and to the reduction of astronomical data by Branham 1251. These works are 
not. however, directly applicable to large, sparse problems. We will show how to 
combine IRLS with conjugate gradient (CG) least-squares inversion [IO, 211; the 
resulting algorithm, which is in fact a nonlinearly preconditioned conjugate 
gradient, is exceptionally efficient for the large, sparse problems encountered i;l 
geophysical tomography. Further, numerical studies show that the iterative 
reweighting (P z 1) stabilizes the inversion procedure in the presence of noise and 
ill-conditioning. 

We will begin with a brief discussion of the IRLS algorithm. This will be followed 
by an extension of the sparse, conjugate gradient least-squares algorithm to in.ciude 
iterative rcweighting. Finally, this combined algorithm will be applied :o varioss 
synthetic examples of travel time tomography. 

ITERATIVELY REWEIGHTED LEAST SQUARES 

Linearized travel time tomography gives rise to large, sparse, rectangular systems 
of Iinear, algebraic equations 

,4x = J’, ( i’! 

where J’ is a vector containing travel time observatiovs, x is a vector containing 
model parameters (slowness or inverse-velocity values referred to some dis- 
cretization), and the matrix A is computed by ray tracing. For a complete dis- 
cussion of seismic travel time tomography see [ 11, 121 and the references cited 
therein. For purposes of this paper, the salient features of Eq. (I ) are these: The 
matrix A is large (perhaps 10” rows and lo4 columns), sparse (less than 1% non- 
zero). and ill-conditioned (condition numbers as large as 10’ are not uncommon). 
Further, due to undersampling and the presence of noise in the data, il may be 
numerically singular. 
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The standard approach to solving Eq. (1) is to compute a least-squares solution, 
usually damped, and to apply some sort of additional filtering or smoothing, either 
during the solution or after. Smoothing during iterative solution is sometimes used 
to stabilize the inversion. On the other hand, instead of seeking a vector .Y which 
minimizes the sum of the squared residuals of Eq. (l), one can consider the i, 
optimization problem: 

P 

min C 1 ACix,- yi , 1 dp. 
x i j 

(2) 

The lower bound on p is necessary since (1 I.u,(~)“~ is not a norm for p less than 
one. By setting the x derivative of Eq. (2) equal to zero one arrives at the 
generalized normal equation 

A’RAx = ATRy (3) 

for ri= (Ax-~)~ #O, where R is the diagonal matrix with elements IY~[~~-~. (For a 
derivation of this result see the Appendix.) The problem of zero or very small 
residuals will be discussed directly. Notice that for p = 2 (i.e., least-squares) the 
usual normal equations are recovered. On the other hand, for p less than 2 the 
weighting matrix R tends to diminish the influence of large residuals; this has the 
effect of eliminating the influence of outliers in the data, and, as we shall see, 
stabilizing the inversion. Note also that if the matrix R were to have constant coef- 
ficients, then Eq. (3) would be equivalent to an ordinary weighted least-squares 
problem. 

It follows from the Minkowski inequality that any convex combination of 
solutions to Eq. (2) is also a solution. To see this, suppose ,that x and z are two 
solutions of Eq. (2) whose error is I/Ax- ~‘11 = (~Az- ~(1 = y, and that 0 <t < 1. 
Then, adding and subtracting ty, one has 

11A(tx-t(l-r)z}--1’11=/)tAx+Az-tAz+r~’-t~--yll 

=Ilt(Ax-y)+(l-t)(Az-y)Il 

~tIIAx-]‘II+(l-t)l(Az-4’/) 

=ty+(l-t)y 

= y. 

Using this one can show that for p > 1, Eq. (2) is uniquely soluble, provided A has 
full column rank, whereas for p = 1 it is not [ 141. 

One obvious difficulty with choosing the weights to be the inverses of the 
residuals is that very small residuals might cause the algorithm to become unstable. 
But zero residuals just mean that we place infinite confidence in these observations. 
Huber [ 13) suggests replacing ri with some lower cutoff, say E, when Jr;/ is less than 
E. This eliminates the problem of zero residuals and, as Byrd and Pyne [7] show, is 
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sufficient to guarantee convergence of the IRLS algorithm. In practice this just 
means that beyond a certain point, all high-confidence observations are weighted 
the same. In addition, Gersztenkorn et al. [!?I found that the results of IRLS were 
improved by normalizing the elements of R to lie between E/I-,,, and 1. Now in fact 
we know from Gauss’ method [2] that, in the absence of roundoff error, there will 
always be some exactly zero residuals, the number of which is equal to the columin 
rank of the matrix. Therefore, solving Eq. (3) with the Huber taper will necessarily 
give somewhat different results than those obtained using linear programming [ 144. 

The IRLS approach to solving Eq. (3) is to solve a sequence of weighted Ieast- 
squares problems with recursively computed weighting matrices, thereby 
approximating the solution to the I, minimization problem. Thus, the solution a: 
the kth step of the iteration is 

provided rl has full column rank. The rank deficient case is easily handled provided 
one uses a solution method which gives the pseudo-inverse solution at each step, 
such as conjugate gradient, SVD, or the row-action methods [lo, 201. The inirial 
approximation used for R is simply the identity matrix; the initial step therefore is 
10 compute an approximate least-squares solution. Convergence results are given 
in [7]. 

IMPLEMENTATION 

There are several approaches available for implementing IRLS. Coleman et a/. 
[ 161 use standard orthogonalization methods (Householder transformations or 
SVD) to compute a direct solution to each weighted 1, problem. For large, sparse 
problems orthogonalization by Householder transformation causes unacceptab1.e fill 
in the matrix. Although there are a number of direct methods available for sparse 
least-squares problems, such as orthogonalization by sparse Givens rotations, we 
prefer to use iterative methods, in particular, the conjugate gradient method, 
because: 

(a) The matrix itself is never directly accessed, so there is no fill, and the 
matrix A’A is not computed. 

(b) Sparse CG software is fairly simple; the modifications necessary for 
iterative reweighting take just a few dozen lines of code. 

(c) CG has proved to be accurate and efficient for a wide range of problemsr 
including the singular problems encountered in tomography and inverse scattering 
(e.g.. [9-12, IS]). 

It is important to note however that, in principle, any iterative least-squares 
solver could be used within IRLS; we have chosen CG primarily for its simplicity. 
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We begin IRLS by computing a “small” number of CG iterations; if a good 
estimate of the noise level is known, the unweighted iterations should be terminated 
well before the fractional reduction in the residual IIT~~J~//IT~J( has reached this level 
[18]. Keeping the number of initial, unweighted CG iterations small, at the 
possible expense of a greater number of weighting steps, prevents the deleterious 
effects of undamped least-squares from cropping up in the first IRLS step. Once the 
iterative weighting has begun the algorithm is very stable and relatively insensitive 
to changes in the parameters. At this point, the residual vector, which is 
automatically computed by CCJ, is used to compute the first weighting matrix R. 
We then apply CG to the weighted normal equation, Eq. (3) (see below), iterating 
until an intermediate stopping criterion is satisfied; this is usually just a fixed 
number of iterations. A new weighting matrix is computed and the procedure is 
repeated until convergence to the desired degree of accuracy is achieved. For a 
more complete discussion of convergence criteria see [lS]. 

To apply the sparse CG algorithm to the (iteratively) weighted normal equations, 
they are written in factored form 

A ‘rR( Ax - y) = 0. (5) 

A least-squares form of CG, developed by Hestenes and Stiefel [21] and referred to 
by Paige and Saunders as CGLS [18], uses the factored form of the normal 
equations, with R = I, and successively applies A and AT to an initial 
approximation in order to generate the solution. This implicit approach is 
significantly more stable than application of the symmetric CG algorithm to the 
normal equations [26]. One observes that the weighting matrix R only appears as 
a right-multiplier of AT in Eq. (5). Now, since CG requires ‘4’ only in the form of 
sparse AT-times-vector multiplies, it is a straightforward matter to rewrite the AT- 
times-vector subroutine to include the diagonal weighting matrix R. Since R is 
diagonal, there is no loss of sparsity and the increase in the number of floating- 
point operations is fairly small. Further, it is a simple matter to turn reweighting on 
or off as desired. 

There are many data structures available for the matrix-vector multiplies. For 
this paper we have chosen an especially simple one, one which nevertheless works 
quite well on a scalar machine with sufficient memory to keep the whole matrix in 
core; Pissanetsky [27], for example, gives many alternatives. We will use a data 
structure in which the NZERO nonzero elements of the matrix are stored row by 
row in the array ELEM, and the row and column indices are stored in integer 
arrays IROW and ICOL. Then an algorithm for doing y = AT .x, where JJ and x 
are arbitrary vectors of the appropriate dimensions, is simply 

do k= 1, NZERO 
y(ICOL(k)) = y(ICOL(k)) + ELEM(k) * x(IROW(k)) 
continue. 
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At each reweighting step the diagonal elements of the R matrix are put into a 1-B 
array. The weighted matrix multiply !: = A’R x is then 

do k= 1. NZERO 
~(Ie0L(k)) = y(ICOL(k)) + ELEM(k) * .;u(IROW(k)) t R(IROW(k)) 
continue. 

Since at each reweighting step the array R is constant, this expression can be 
used to do the weighted least-squares problem, where the weights are applied to rhe 
rows or observations. Thus if one has a priori knowledge about the accuracy of the 
observations, that knowledge can be incorporated into the inversion at this stage. 
Suppose, for example, that the travel time data are not uniformly reliable. Perhaps 
a weight factor could be computed for each travel time based, e.g., on the signal to 
noise ratio or trace-to-trace correlation. These weights could be stored and used 
later when the inversion is performed. Similarly, column or parameter weighting 
can be incorporated. If one has a priori information about the parameters, or 
simply wishes to equilibrate the columns of the matrix, one can include a diagonal 
weighting matrix H and solve the equivalent (for M diagonai and nonzero) problem 
ANN- ‘.x = AH? = ~1 for x’ and then recover X. This involves changing the 1’ = A . s 
routine from 

do k = 1, NZERO 
HIROW( = ?VROW(k)) + ELEM(k) + s(ICOL(k)) 
continue 

to 

do k= 1, NZERO 
y(IROWik)) = I:(IROW(k)) + ELEM(k) * x(ICOL(k)) * H(ICOLlk)l 
continue. 

Note that if a good diagonal preconditioner N is known, one can replace 
ELEM(k) by ELEM(k) * H(ICOL(k)) once and for all and considerably reduce 
the number of floating-point operations. Now, the bulk of the floating-point 
operations in a conjugate gradient solution of the least-squares problem are 
accounted for by matrix-vector inner products and transposed matrix-vector inner 
products, one each per iteration. There are NZERO multiplies and NZERO adds 
per matrix-vector inner product. So the total number of floating-point operations is 
2 NZERO adds and 2 NZERO multiplies per iteration. If either row or column 
weighting is included this is increased to 2 NZERO adds and 3 NZERO multiplies 
per iteration. Thus, if the total number of iterations is held fixed, the additional 
work required to do the weighting is modest. 
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FIG. 1. Geometry for VSP tomography example. The middle layer contains a velocity anomaly. 
Starting with a three layer initial guess, travel time perturbations are inverted in order to recover the 
anomaly. 

NUMERICAL EXAMPLES 

We will consider two examples of tomographic inversion. The tomographic 
aspects of both of these problems have been described elsewhere. The first example, 
a synthetic vertical seismic profile (VSP) in which a square velocity anomaly is to 
be reconstructed, is described in [lo]. The second example, the tomographic inver- 
sion of a complicated synthetic seismic reflection survey, is described in [ 111. In 
both examples the IRLS minimization norm is taken to be p = 1. In order to 
mitigate the ill-conditioning all calculations are done using 64-bit arithmetic (on an 
IBM 3090 scalar computer). 

Figure 1 shows a VSP geometry with a square velocity anomaly in the middle 
layer. Figure 2 shows the ray illumination from 18 sources on the surface to 18 

HORIZONTAL DISTANCE 
0 5 10 15 

0 

F ___~~ 

FIG. 2. 18 sources are positioned along the top surface and 18 receivers are positioned along the side 
of the model. 
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receivers on the left side of the model. In this example, straight rays are used; in the 
reflection tomography example curved rays were traced by numerically solving two- 
point boundary value problems for the ray equation (i.e., the Euler-Lagrange 
equation for Fermat’s principle). The upper left triangular region was covered with 
136 square cells of constant slowness; the matrix is therefore 324 rows by 136 
columns. The initial guess consisted of the three layers without the square anomaly. 
The idea of linearized travel time inversion is to trace rays through an initial siow- 
ness (inverse-velocity) model and use the differences between the computed travel 
times and the observed travel times to invert for the perturbations to the slowness 
model. These slowness perturbations are then added to the initial model in order to 
produce an updated model. To graphically display the solutions, the slowness per- 
turbations are plotted as a function of cell number. The resulting plots give the 
perturbations to the slowness vector required to reconstruct the anomaly. Since the 
anomaly was covered by 6 rows of 6 cells each, the exact solution corresponds to 6 
perturbation steps of height 0.0138 ( = + - &), each of which is 4 cells wide. Figure 3 
shows the conjugate gradient inversion of the travel time residuals for various num- 
bers of iterations and the exact solution. Since the travel times were produced with 
straight ray modeling and straight rays were used to invert them, the data were 
noise free and the reconstruction after 500 CG iterations was nearly perfect. 
Interestingly, even in this case all of the singular values are not accurately deter- 
mined. The SVD solutions given in [IO] are highly inaccurate if all 136 singular 
values are used; the conjugate gradient solution shows no such difficulty. Next we 
tried adding noise to the right-hand side (the travel times). First, an isolated spike, 
0.9 times the maximum absolute value of the travel time residuals, was added to 
one of the 18’ travel times. Figure 4 shows the exact solution (no spike), 2.5 and 250 
iterations of conjugate gradient (no reweighting), and 25 iterations of CG followed 
by 9 reweighting steps of 25 CG iterations each (denoted 10 x 25 in the figure). 

--- ~ 
0 17 34 51 66 65 102 113 736 

CELL NUMBER 

FIG. 3. Conjugate gradient solution for the slowness perturbations required to reconstruct :he 
anomaly in the noise free case. The exact solution and the solutions for increasing numbers of iterations 
are shown. 
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25 CG 
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0 17 34 51 
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102 119 136 

FIG. 4. An isolated spike is added to the right-hand side. Shown are the exact solution (with no 
spike) and the solutions obtained with 25 and 250 iterations of CG and 10 IRLS steps of 25 CG 
iterations each. The figures labeled 250 and 10 x 25 therefore represent the same number of CG 
iterations. 

With experience we have found that IRLS is relatively insensitive to the number of 
CG iterations per reweighting step. After 250 iterations, the least-squares algorithm 
became unstable, whereas the I, solution via IRLS was relatively unaffected by the 
noise. The fact that I, inversion is more stable than I2 inversion in the presence of 
isolated bursts of noise is well known (for example, C4, 8, 91). 

In order to see to what extent, if any, the beneficial effects of IRLS are due 
merely to restarting the CG, we carried out a 10 x 2.5 IRLS experiment as in Fig. 4, 
but with trivial weighting (minimization norm equal to 2). These results are shown 
in Fig. 4a, along with the I, result. Comparing this with Fig. 4 one can see that 
indeed a small improvement is due to restarting, but that the lion’s share of the 
improvement is due to the iterative reweighting. For more details on restarted CG- 
type methods see, e.g., [28]. 

0 y-?4- 17 TT6--;;, lb29’ 136 
CELL NUMBER 

FIG. 4a. The same problem as in Fig. 4. To see to what extent the improvements shown in Fig. 4 are 
due to simply restarting the CG we tried a (10 x 25) IRLS sequence with the minimization norm equal 
to 2, i.e., using unit weights. By comparison with Fig. 4 we see some improvement over the unrestarted 
CG (I x 250), but the bulk of the improvement is clearly due to the iterative reweighting. 
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Having looked at the effects of a short burst of noise in the data, suppose instead 
that one adds Gaussian noise to all of the travel times. Figures 5 and 6 show two 
such inversions. Each figure shows 130 CG iterations (no reweighting) and a 
reweighting sequence which consists of 25 CG iterations followed by 3 reweighting 
steps of, respectively, 30, 35, and 40 iterations, for a total of 130 iterations. In Fig. 5 
the mean of the noise is 0 and the standard deviation is 0.01 times the max of I;‘;/, 
the right-hand side (r.h.s.1. In Fig. 6 the mean of the noise is 0 and the standard 
deviation (SD 1 is 0.005 times the max of / ~‘~1. 

The condition number of the matrix A for this problem is roughly 10’. This is 
sufficiently large that even the relatively small perturbations involved can cause 
drastic effects. In Fig. 6 the noise level is so small that standard least-squares inver- 
sion works well, provided that the number of iterations is limited. Figure 7 shows 
the effects of doing too many least-squares iterations; the top trace is 400 iterations 
of CG, the middle trace is IRLS (consisting of a weighting sequence of 80, 90, 100, 
and i 10 iterations), and the bottom trace is 100 iterations of CC. In Fig. 5- the 
effects of the ill-conditioning of the matrix are obvious even with a limited number 
of iterations. This points to a basic property of the CG algorithm: one observes that 
in the early stages of iteration, changes in the solution are primarily due ta the 
largest eigenvalues (in this case of A ‘RA 1, whereas the effects of the smallest eigen- 
values become more pronounced as iteration proceeds. (For a discussion of the 
connection between CG and the Lanczos algorithm, from which CG inherits this 
property, see [17].) Therefore, noise which is small compared to the large eigen- 
values but comparable to the small eigenvalues will have a comparativeby large 
effect on the small eigenvalues, and hence on the solution, after sufficiently many 
iterations. A key advantage of IRLS is that one need not be quite so careful abct;t 
terminating the iteration or estimating the level of noise in the data. 

To see the effects of the reweighting procedure on the eigenvalue spectrum of 
.JTK4, we did singular value decompositions of this matrix at various stages of the 
IRLS procedure for the Gaussian perturbations used for Fig. 5. Figure 8 shows the 
singular values of -4 TRA for N= 0. 1, 2, and 5 reweighting steps; each reweighing 
step involves 50 CG iterations. For N= 0, R is simply the identity matrix. The con- 
dition number of -4 ‘RA was essentially unchanged from step to step. Next we com- 
puted winnowed SVD solutions to .4 ‘RAx = ATR!-, where R was computed with 50 
CG iterations. Figures 9 and 10 show the solutions computed with singular value 
lower cutoffs of, respectively. 0.001 and 0.1. The solutions labeled RWT were ccm- 
puted with reweighting and the solutions labeled LJNRWT were computed with no 
reweighting. Again, one can see that in the presence cf noise iterative reweighting 
improves the stability of the inversion. 

For purposes of comparison we tried another widely used least-squares solver on 
this model with the isolated spike in the data. The results of the LSQR algorithm of 
Paige and Saunders [l&19] are shown in Fig. 11. LSQR incorporates damping 
(adding a small positive term to reduce singularity and thereby improve stability) 
at essentiahy no extra cost. The choice of damping parameter is somewhat 
problematical, so we show results for various values of damping and maximum 
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130 CG 

0 I7 34 51 66 65 102 119 i36 
CELL NUMBER 

Fro. 5. Gaussian noise is added to all of the elements of the r.h.s. In the first example, the mean of 
the noise is 0 and the standard deviation is 0.01 times the maximum absolute value of the r.h.s. Shown 
are 130 iterations of CG and 4 steps of IRLS totaling the same number of CG iterations. 

0 17 34 51 
CELL :“MBE: 

102 119 136 

FIG. 6. As in Fig. 5, Gaussian noise is added to the r.h.s. In this case the mean of the noise is 0 and 
the standard deviation is 0.005 times the maximum absolute value of the r.h.s. Shown are 130 iterations 
of CG and 4 steps of IRLS totaling the same number of CG iterations. 

~j-j&++lOO CG 

0 17 34 51 66 
CELL NUMB&I5 

102 119 136 

FIG. 7. The same problem as in Fig. 6; showing the effects of too many iterations in unweighted CG. 
The top and bottom traces are unweighted CC. The middle trace was computed with 4 reweighting 
steps. 
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SINGULAR VALUES 

FIG. 8. Eigenvalue spectrum (computed with SVD) of .4TRA for 0, 1, 2. and 5 reweighting steps. 50 
CG iterations are done for each reweighting step. The condition number of .4TRA is essexially 
unchanged between steps. 

UNRWT 

6 
CELL NUMBER 

FIG. 9. Winnowed SVD solutions to ATR.lr= ATRy (labeled RWT) and .4’.4x = .4’y, using a 
singular value cutoff of 0.001. R is computed using 50 CG iterations. 

5 17 34 
FELL N:Md5 

102 119 1% 

Frc;. 10. Winnowed SVD solutions to ArRAx = ATRy (labeled RWT) and rlTA.r = .4T~, using a 
singular value cutoff of 0.1. R is computed using 50 CC iterations. 
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17 34 51 
CELK"Mt38E5R 

102 119 136 

FIG. 11. An isolated spike (as in Fig. 4) is added to the r.h.s. The top trace is 25 undamped iterations 
of LSQR. The next three traces show various levels of damping applied to LSQR with a maximum 
number of iterations equal to 250. The comparable IRLS results are in Fig. 4. 

iteration number. Not surprisingly, the effects of explicit damping are similar to the 
effects of reducing the total number of iterations. On the unperturbed model LSQR 
gives results which are virtually identical to least-squares CG. Figure 11 should be 
compared with the IRLS results in Fig. 4. If we stop after only 25 iterations the 
LSQR solution and IRLS solution are similar. And if we over-damp the problem, 
the LSQR inversion remains stable. But no matter what we do we are unable to 
recover the solution to the extent that we can with the I, solver. 

For the next example we considered a synthetic seismic reflection survey. Finite 
difference synthetic seismograms were computed for the geologic model shown in 
Fig. 12. Grey-scale velocities in feet/second are shown on the left. The model is 
32000 ft across and 16000 ft deep. It was covered with approximately 2000 square 
cells of constant slowness: and about 4500 travel times were extracted from the 
unstacked, common-source seismograms, thus giving a linear system (Eq. (1 j) of 
4500 rows and 2000 columns. 

It should be emphasized that this problem is well suited to solution via damped 
least-squares since the data are exceptionally clean and the seismograms easily 
interpreted; there are no outliers, for example. When inverting real data, outliers 
are an ever-present problem. Thus one would expect that the real advantages of 
robust methods, such as IRLS, would be seen more clearly in application to real 
data. 

Figure 13 shows the first approximation to the model used in the tomographic 
inversion. (See Cl I] for details.) Even though the initial approximation consists of 
flat layers, the model is not uniformly illuminated. This is due to the inability to get 
travel times associated with the deeper or more complex portions of the model. The 
relative cell illumination is shown in Fig. 14. The cell illumination consists of the 
total ray length per cell divided by a characteristic cell length; the definition of this 
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FIG. 12. Finite difference synthetic seismograms were produced for this velocity modei. Velocities are 
shown in grey-scale code. Travel times (for the reflected rays) were then extracted from the unstacked 
data and compared to travel times computed by numerically tracing rays through the in:tial mode! 
shown in Fig. 13. 

FIG. 13. Initial velocity model used in the tomographic inversion. 
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FIG. 14. The relative cell illumination. This is the total length of the rays passing through a given cell 
normalized by a characteristic cell length. 

FIG. 15. Least-squares velocity tomogram computed with damped LSQR. Medium damping. 
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cell length is somewhat arbitrary and is simply a reflection of the fact that a small 
cell and a large cell might be equally well illuminated with very different total ray 
lengths. The portions of the model which are poorly illuminated are left unpertur- 
bed. Figures 15 and 16 show velocity tomograms that were computed with damped 
LSQR. The damping parameters were chosen by trial and error. The dimension of 
the matrix elements is length (i.e., of ray path) and the scale is determined by the 
size of the tomography cells. Since the tomography cells are 475 ft2, the damping is, 
very roughly speaking, large or small relative to this number. The damping use 
Fig. 15 was 2500, while for Fig. 16 it was 7500; increasing the damping beyond this 
value did not significantly change the results. Figure 17 shows the I, solution com- 
puted with IRLS; no explicit damping is used in the I, code. For IRLS and LSQR 
the travel times were assumed to be accurate to about 1%; in both cases con- 
vergence was achieved in less than 50 iterations. The solution times for both 
methods are comparable, less than 10 s CPU on the IBM 3090 scalar computer. 
The IRLS tomogram is very similar to the more heavily damped of the two LSQR 
solutions. 

From the standpoint of tomography, Figs. 15--17 are first iterations in an 
iterative nonlinear inversion procedure. For more details about how this iteration 
procedure is continued see [ll]. As a final step we usually apply a fine-grain 
median filter to the the output velocity model in order to smooth the solution for 
the next stage of the iterative inversion. Median filters are extremely useful 
smoothers for computed tomograms [22]. They ignore outliers instead of averaging 
them into the solution. Further, median filters preserve edges, ubiquitous features in 
exploration seismologic models. The median filtered version of the IRLS solution is 
shown in Fig. 18. This can be compared with the initial model shown in Fig, 12. 

FIG. 16. Leas:-squares velocity tomogram computed with damped LSQR. High dampmg. 
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FIG. 17. I, velocity tomogram computed with IRLS. No damping is required. 

FIG. lg. Same as Fig. 17 after a tine-grain median filter has been applied to smooth the result. 
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The smoothed IRLS tomogram shows good agreement with the well-illuminated 
upper part of the model. 

CONCLUSIONS 

We have shown how to efficiently solve large, sparse, rectangular systems of 
linear. algebraic equations in the I, norm through a combination of iteratively 
reweighted least squares and conjugate gradient. The resulting algorithm is very fast 
and (for p z 1) appears to be quite stable in the presence of noise and ill- 
conditioning. IRLS has the ability to reject, or at least significantly diminish, the 
influence of outliers in the data. And even for problems with relatively clean data. 
IRLS appears to work at least as well as damped least-squares methods such as 
ESQR. 

In addition, IRLS is very easy to program and use. We have also shown how to 
efficiently incorporate a priori weighting of the observations and parameters within 
the ERLS framework. Finally, the sparse implementation of IRLS via conjugate 
gradient is virtually as fast as a single application of least-squares CG or LSQR to 
the I, problem. 

Although we have confined the numerical examples to synthetic travel time 
tomography problems, we have successfully applied IRLS to a variety of problems 
including acoustic inverse scattering [9], the tomographic inversion of real seismic 
reflection data [ 111, and the computation of refraction statics corrections. In 
addition, we have compared the performance of IRLS with that of many least- 
squares algorithms including iterative back-projection (IBP ), many variations of 
the algebraic reconstruction technique (ART) and the simultaneous iterative 
reconstruction technique (SIRT), Gauss-Seidel, LSQR, least-squares conjugate 
gradient, and others. We have found that IRLS consistently performs as swell as or 
better than all of these methods whenever noise and ill-conditioning are significant. 
As previously mentioned, however, any of these iterative least-squares solvers 
could, in principle, be adapted to perform IRLS; we have simply looked at one 
method, the conjugate gradient algorithm of Hestenes and Stiefel. 

APPENDIX 

In this Appendix, Eq. (3) will be derived from Eq. (3). Using the notation 
ci= a/&;. it suffices to compute 

1 d, /x A,*Yj- ).y. 
I i 

Assuming for the moment that the argument of the absolute value function is never 
zero one has, recalling that sgn(x)=x/lsl, 
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=T rip (Y~J~-~ A, 

= [A=R(.4x - )I)]~, 

where the matrix R is defined to be diag(p IrilP-‘). 
Since the last expression is set to zero in order to solve the minimization 

problem, the multiplicative factor p can be ignored in the weighting matrix; this 
gives Eq. (3). As has already been mentioned, if p is less than 2 the above 
expression becomes infinite for zero residuals. This problem is avoided by replacing 
JYJ with a lower cutoff when it falls below that cutoff. For more details see [ 13,231. 
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